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a  b  s  t  r  a  c  t

Laser  Ablation  Inductively  Coupled  Plasma  Mass  Spectrometry  (LA-ICP-MS)  is  an  established  and  power-
ful  tool  to  analyse  the  distribution  of  elements  in tissue  sections.  Among  other  applications,  the  technique
is  expected  to play  a central  role  in the  understanding  of normal  and pathological  element  distributions
in  brain  tissue.

In  order  to interpret  the distribution  of  elements  such  as  the  bio-metals  Cu,  Zn,  Fe  and  Mn  and  proceed
to  an  element-based  comparison  between  groups  of  samples,  it is  necessary  to  anatomically  parcel  the
tissue section  into  regions-of-interest  and  to average  element  signals  across  these  regions.  This  catego-
rization,  also  termed  segmentation,  can  be  done  manually,  but the  support  of  automated  procedures  is
highly desirable,  especially  in  order  to (1)  identify  groups  of  pixels  with  similar  elemental  fingerprint,
termed  clusters,  and  to determine  which  degree  of discrimination  is  reasonable;  (2)  segment  anatomical
structures  known  to exhibit  substructure  but  without  clearly  defined  borders,  such  as  the healthy  cortex,
zones of  tumours  or  ischemic  lesions,  in  an  observer-independent  way;  and  (3)  to  investigate  correlation
between  the  distribution  of  elements  in  tissue  and  phenomena  which  incorporate  contributions  from
several  elements  in a convoluted  way,  such  as the  origin  of contrast  in  magnetic  resonance  imaging
(MRI)  experiments.

The  multi-parametric  information  provided  by  LA-ICP-MS  lends  itself  naturally  to  multivariate  analysis.
This  study  provides  a new  way  to  synthesise  the  information  distributed  over  many  element  images  by
demonstrating  the  possibility  to segment  tissue  sections  into  biologically  meaningful  substructures.  This
data-driven,  observer-independent  categorization  was  based  on  k-means  clustering.  The  optimal  number
of clusters  was  determined  based  on  the  silhouette  method.

Segmentation  of  healthy  tissue  resulted  in  a set  of  substructures  in  perfect  congruence  to  the  anatomical
architecture.  Segmentation  of  ischemic  lesions  identified  a  number  of  regions  with  different  fingerprints
of C, P, Fe,  Cu  and  Zn  deposits.  Clustering  provides  a  promising  way  of  combining  the  information  present
in several  element  images  and  reveals  structure  which  is  not  entirely  present  in  any  isolated  image.

As  a  useful  by-product  of this  study  we  have  found  a promising  method  for investigating  the optimal
line  length  within  the  process  of  image  reconstruction  from  the  continuous  stream  of  raw  data  points.
Images  were  characterized  by  their  tensor  of  inertia,  in  image-  as  well  as in  Fourier  dual-space  (k-space)

and changes  in the  ratio  of the  intrinsic  moments  of  inertia  or  the orientation  of  the  principal  axes  were
found  to  closely  describe  the  optimum  orientation.  The  first  results  look  very  encouraging,  but  the  method
must be  extensively  tested  before  it can  be  used  as  an  automatic  procedure.

In  conclusion,  cluster  analysis  of mass  spectrometric  imaging  data  allows  one  to  define  the  fingerprint
element  distribution  of  different  anatomically  or functionally  distinct  regions  and  opens  a  new  way  for
the study  of correlation  between  the  element  distribution  and  related  phenomena.
∗ Corresponding author. Tel.: +49 2461612107.
E-mail address: a.m.oros-peusquens@fz-juelich.de (A.M. Oros-Peusquens).
URL: http://www.brainmet.com/ (J.S. Becker).
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© 2011 Elsevier B.V. All rights reserved.

1. Introduction
Several medical applications can benefit enormously from the
capability of laser ablation inductively coupled plasma mass spec-
trometry (LA-ICP-MS) to provide spatially resolved quantitative
information regarding the element composition of the brain [1–6].

dx.doi.org/10.1016/j.ijms.2011.03.014
http://www.sciencedirect.com/science/journal/13873806
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he questions most accessible to mass spectrometric imaging
MSI), an inherently 2D technique, are those that can be answered
y measuring a few slices only. This is due to the long mea-
urement time in the range of 4 h/cm2. In comparison, Magnetic
esonance Imaging (MRI) is a fast, non-invasive imaging method
ith excellent and versatile soft tissue contrast and easily obtain-

ble 3D coverage of the entire sample specimen. However, MRI
uffers from limited specificity regarding the microscopic source of
ontrast generation. Consistently combining element analysis on

 small number of slices with information obtained from whole
rain, in vivo or ex vivo, could provide valuable insight into the
rigin of contrast in MRI. In addition, by correlating the contrast
f the two methods, it might become possible to extrapolate the
nformation extracted from a few slices by element analysis to the

hole brain. To this aim, a pixel-by-pixel comparison between ele-
ent concentration and the parameters used to describe the MR

ontrast (magnetisation density, relaxation times) would be highly
esirable. This is, however, a difficult task due to the consider-
ble deformations induced in the process of slicing the brain and
ounting the slices onto slides. An alternative approach is based

n partitioning the tissue section into regions-of-interest (ROI), a
rocess also termed segmentation, and investigating the correla-
ion between element concentrations and MR  parameters across
nd between ROIs.

The partitioning of tissue into ROIs is also an important step in
he analysis of LA-ICP-MS data for any application, especially for
roup comparisons. This categorization can be done manually, but
he support of automated and observer-independent procedures is
esirable. In general, the ROIs should reflect the anatomical archi-
ecture of the sample and be as homogeneous as possible regarding
or example MR  contrast and element distribution. Depending on
he specific question, parcelation can be done on a finer or a coarser
cale.

As an example, the dependence between the transversal relax-
tion rate R2* of water protons and iron concentration might well
e linear in different regions [7],  but a different proportionality con-
tant might be expected if – for example – the granularity of iron
eposition, which can be different from region to region, plays a
ole. A sufficient number of points characterising the correlation is
equired if one is to identify such effects without prior information
bout their existence and nature. Therefore, in this special applica-
ion a large number of points inside homogeneous ROIs is required
n order to investigate the correlation between the element con-
entration and MR  contrast quantitatively.

When the question is to compare specific diseases or treatments,
t is desirable that the parcelling is complete but not redundant
esulting in as few ROIs as possible. Here, automated procedures
an help to reasonably reduce the plethora of described anatom-
cal microstructures. Especially with respect to layered structures

ith smooth transitions between layers – such as the neocortex
 an automated procedure may  outperform an approach based on
isual inspection of the contrast. Furthermore, automated proce-
ures can help in the understanding of the degree of similarity
f anatomical regions with respect to their elemental signature
nd thus establish a hierarchy of structures that are more or less
ognate.

Cluster analysis, which consists in finding partitions in data [8],
as become an increasingly popular part of data analysis. Cluster
nalysis is a method for finding a reasonable grouping of data points
haracterized by a set of parameters. In the simple case of two
arameters one would plot every data point of the element-image

n a coordinate system with e.g., the Zn signal on one and the Cu

ignal on the other axis. Within the inhomogenous distribution in
his xy-plot usually clouds of data points can be identified and every
ata point can be assigned to a given “cloud” – a cluster. A cluster
nalysis of data points characterized by a large number of param-
 of Mass Spectrometry 307 (2011) 245– 252

eters can be understood as transposition of the 2D process to an
n-dimensional space.

Clustering has been applied to areas as different as determining
family trees e.g., of monkeys or bacteria based on DNA-sequences
in taxonomy, blood cell sorting or establishing specific diagnostic
criteria in medicine, in geology, business, engineering systems and
image processing, (see for example Refs. [9–11]).

Since mass spectroscopic imaging inherently offers a multi-
parametric characterization of tissue with a large number of
parameters, it is ideally suited for cluster analysis. The applica-
tion of cluster analysis to MALDI-ToF-IMS data yielding new and
anatomically relevant information has been shown very recently
[12]. As a first step towards a systematic and quantitative compari-
son between element distribution and MR  contrast, we  investigate
in this paper the application of clustering analysis to LA-ICP-MS ele-
ment images. We  exemplify the method on three Wistar rat brain
slices: one from a formalin fixed brain with a stroke induced by
transient mean cerebral artery occlusion (tMCAO), one from a for-
malin fixed brain with a stroke induced by photo-thrombosis, and
one from a fresh brain obtained from a healthy rat.

The proposed clustering analysis should be widely applicable
and is expected to become a standard step in the evaluation of
element images obtained by LA-ICP-MS for numerous applications.

2. Materials and methods

2.1. Rat brains

All the experiments were performed in accordance with the
German law for the protection of animals. Permission for animal
experiments was  obtained either from the University of Duessel-
dorf (stroke model) or from the Research Centre Juelich (healthy
animal). Two male Wistar rat brains originated from a study of
inflammation following stroke reported in [13]. Stroke was induced
by either photothrombosis (PT) or transient main cerebral arterial
occlusion (tMCAO) and the animals were sacrificed 7 days after
stroke. The brains were immediately excised and immersed in 4%
formalin solution. After extensive fixation (3.5–4.5 years) the brains
were either cryocut in 60 �m thick slices (tMCAO) or embedded in
paraffin and then cut in 14 �m thick slices (PT). One male Wistar
rat of 250 g body weight was sacrificed under isofluorane anaesthe-
sia, the brain excised and shock frozen in liquid 2-methylbutane at
−50 ◦C and subsequently cryocut in 30 �m thick slices.

The cryocut sections were dried and stored at room temperature
for at most 2 weeks before LA-ICP-MS measurements. The slices
obtained from the paraffin-embedded brain were deparaffinized
with xylene prior to LA-ICP-MS.

2.2. LA-ICP-MS

All the LA-ICP-MS measurements employed a commercial laser
ablation (LA) system (UP 266 from NewWave, Freemont, CA, USA)
coupled to a quadrupole-based inductively coupled plasma mass
spectrometer (XSeries2, Thermo Fisher Scientific, Germany). The
laser ablation system was operated with a frequency-quadrupled
Nd:YAG laser at a wavelength of 266 nm,  a repetition frequency of
20 Hz and a laser spot diameter of 90–120 �m, depending on the
sample type. The spot size for the paraffin-embedded PT brain slice,
which was  substantially shrunken with respect to fresh tissue, was
90 �m;  no spaces were left between successive lines. The cryocut
slice from the tMCAO brain was  measured with 100 �m spot size

and 60 �m gap, the cryocut slice of shock-frozen fresh brain with
120 �m spot size and 50 �m gap between the lines.

Brain tissue was  ablated line-by-line at scan speeds of
30–60 �m/s  and transported by argon to the ICP source. Ioni-
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Fig. 1. (a) Images obtained with different reshaping parameters (number of points-per-line P = 137, 138, 139, 140). Severe shearing effects appear in images with erroneous
reshaping. (b) The absolute values of the Fourier dual space (k-space) of the images shown in (a). (c and d) Possible indicators of the best approximation of the effective
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umber of points-per-line. Part (c) shows the angle between the orthogonal system
alculated in image space. Part (d) shows the ratio between the larger and the smalle
f  intensity.

ation was obtained in the Ar plasma and the resulting single
harged cations were analysed in the quadrupole mass analyzer
ith respect to their mass/charge ratio. Complete ablation of the

ntire thickness of the sections was achieved by the laser in all
ases. The content of several elements was quantified by compar-
son of the number of counts/s from tissue with the number of
ounts/s obtained from homogeneous matrix-matched standards
easured in the same run under the same conditions. These aspects

re described in more detail in Refs. [1–4,6].

.3. Data analysis

.3.1. Reshaping
The raw data output is a continuous list of count rates for each

reselected mass/charge value. In order to maximise the sensitivity
f the method, the sampling time per element is set to the maxi-
um value of 0.1 s. Each datum point is obtained from a pixel with

 width (in �m)  given by the product of the sampling time (i.e., 2.5 s
or 25 m/z species) and the x-scan speed (in �m/s) of the xyz-stage.
he pixel height corresponds to the laser spot diameter if, as in the
resent setting, the laser spots corresponding to different lines do
ot overlap. The x-speed is usually chosen to be slightly lower than
he quotient of line distance and sampling time, resulting in nearly
uadratic pixels.

Concerning reconstruction of the list-mode data, a simple
eshape operation should create an image of that isotope’s distri-
ution from the string of values for a single mass/charge value.
owever, as laser repetition frequency, the lateral propagation of
he sample stage, and the cycle frequency of the mass spectrom-
ter are not synchronized, the effective number of points per line
n the element images is not an integer. Even a slightly erroneous
stimate of the “number of points” (for example, 138 instead of
ed by the intrinsic axes of inertia and the Cartesian system. The tensor of inertia is
ents of inertia when the tensor of inertia is calculated from the k-space distribution

138.65) leads to images with severe shearing. This is easily seen in
Figs. 1 and 2, where the reshaping is illustrated using the phospho-
rus distribution.

We sketch here a simple method to determine the correct num-
ber of points per line with a two-digit accuracy. If proven to work in
general, the procedure described below could easily be extended to
run automatically and also with higher accuracy, if necessary. We
have used the property of the Fourier transform to give information
about the spatial frequencies in an image, with the aim of finding
the image with the simplest pattern. The frequency content and
the distribution of intensity in the Fourier as well as image space
change with changing reshaping factor. Since the total intensity
and the centre of mass (zeroth and first moments of the distribu-
tion) do not depend on the number of points-per-line, we have
investigated the sensitivity of higher moments of the intensity dis-
tribution to reshaping. This was done in Fourier as well as in image
space by means of the tensor of inertia, which reflects the intensity
distribution in the object with respect to given axes.

The raw data (Excel table) were transformed to ASCII and
imported in Matlab (www.mathworks.com). If the number of lines
scanned by the laser (L, integer) is known, it is used to estimate
the starting value for the number of points/line (P, integer), other-
wise an equal number of lines and points/line is taken as a starting
value, such that their product gives the closest integer to the orig-
inal string length. The string is reshaped to a P × L matrix, which
is Fourier transformed. If a significant part of the intensity lies
outside the central cross (lines at x = 0 and y = 0) in the Fourier trans-
formed matrix, the P and L values are modified and the procedure is

repeated. The inertia tensor was  calculated both in image space and
in the Fourier dual space (k-space) using the absolute value of the
transformed matrix. The origin was  set to the centre of the matrix,
(P/2,L/2), and the dimensions were normalized such that the coor-

http://www.mathworks.com/
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Fig. 2. Influence of reshaping: (a) 138 points-per-line; (b) microphotograph; (c) 138.65 points-per-line. The proper choice of (non-integer) number of points-per-line should
c micro
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orrect  for shearing and provide an image which is geometrically identical with the 

onditions are far from being fulfilled by image (a), where an integer number P = 1
mage  was obtained with an optimal number of points-per-line determined with tw

inates ran from −0.5 to 0.5 in both x and y. The equivalent of mass
or inertia was taken to be the image intensity. The inertia tensor
as calculated with respect to the x and y axes, in image as well as

n k-space (using the absolute values) and then diagonalized. This
as repeated for a number of reshaping factors P × L. The images

nd corresponding k-spaces are shown in Fig. 1a and b, respec-
ively, for dimensions of 137 × 62, . . .,  140 × 62. The influence of the
eshaping is clearly seen in both image and k-space. Several possible
ndicators of the correct number of points/line were investigated.
n image space the angle of rotation leading from the Cartesian sys-
em of coordinates (x, y) to the principal axes of inertia was found
o be the best indicator and is shown in Fig. 1c (P-values from 136
o 142). It is seen to change sign between the values of 138 and
40 points per line, as the tilt in the images (Fig. 1a) changes ori-
ntation. In k-space, the transition is best reflected in the ratio of
he intrinsic moments of inertia, shown in Fig. 1d, again reflecting

 change in the tilt of the intensity going through a more circular
tructure. However, the details of the intensity distribution of the
orrect k-space seem to play a non-negligible role in this case, and
he transition is found at 140 points/line instead of 139. Further
nvestigations of the best indicator are required.

Once the closest integer values, P1 and P2, of the effective
oints-per-line value have been found, further fine-tuning is usu-
lly required. The string of values acquired for each element is
nflated to 10 times its initial size by replicating each value 10
imes. Reshaping with numbers of points-per-line between 10 × P1
nd 10 × P2 can be investigated with the method outlined above,
nd the integers P110 and P210 closest to the effective number of
oints-per-line are again found. In the next step, the initial string
f values is inflated 100 times and the search is repeated. The influ-
nce of increasing the precision of the determination of the effective
umber of points-per-line is illustrated in Fig. 2.

.3.2. Cluster analysis
Clustering has been performed using the K-means algorithm

14] which has established itself as one of the most popular clus-
ering techniques due to its simplicity and fast convergence. We
escribe the main ingredients below.

A particular clustering by means of k clusters, each denoted by
k represents a partition of the data such that each point belongs
o one cluster only. The intraclass inertia of the resulting partition
s, for one cluster, the average squared distance from a point zj to
ts cluster centre ck, and for the whole partition:

W = 1
K∑∑

d2(zj, ck) (1)

N

k=1 j  ∈ Ck

The interclass inertia is the average squared distance from a
luster centre ck to the centre of gravity c̄ and for the whole parti-
photograph of the slice mounted on the glass slide before LA-ICP-MS (part b). These
points-per-line was chosen, but are well met  by the image shown in part (c). The
it precision, P = 138.65.

tion becomes:

IB = 1
N

K∑

k=1

∣∣Ck

∣∣ · d2(ck, c̄)  (2)

where d2(a, b) is the squared distance between vectors a and b, |Ck|
is the number of elements in cluster Ck, and c̄ =

∑K
k=1

∣∣Ck

∣∣ /N · ck is
the weighted average of the cluster centres ck. Ideally, the intraclass
inertia will be minimized, resulting in homogeneous clusters, and
the interclass inertia will be maximized, such that the clusters are
as well separated as possible.

For a given number K of clusters, the intraclass inertia is itera-
tively minimized by the steps:

- 0. Choose initial K centres ck
(0). This is usually done in an arbitrary

way.
- 1. Assign each data vector xj to the cluster Ck with the nearest

centre ck
(i). The assignment is based on a distance metric d(xj,ck

(i)).
- 2. Determine new cluster centres ck

(i+1) such that the sum of the
squared distances from all points in Ck to the new cluster centre
is minimized. This is ensured by setting the centre to the mean
over all the members of a cluster.

- 3. Increment i and go to step 1 until the partition is stable.

Both steps 1 and 2 decrease the within-class inertia, so that
the algorithm converges in a finite number of steps. The final
result, however, can depend strongly on the initialisation. In order
to reduce or eliminate this dependence, it is common to include
heuristics based on a local search, in which centres are swapped in
and out of an existing solution, typically at random. Such a swap
is accepted if it decreases the between-class inertia, otherwise it is
ignored. Alternatively, the procedure (steps 0–3) is repeated several
times with different – and random – initialisations.

A shortcoming of the k-means clustering method is that the
number of clusters must be defined in advance. A useful tool in
deciding which number of clusters describes the data better is pro-
vided by the silhouette distribution.

The silhouette value for each point is a measure of how similar
that point is to points in its own cluster (how compact the cluster
is) compared to points in other clusters (how well separated the
clusters are). It is defined as [11]:

S(i) = [min(b(i, k)) − a(i)]
max(a(i), min(b(i, k)))

where a(i) is the average distance from the ith point to the other
points in its cluster, and b(i,k) is the average distance from the ith

point to points in another cluster k.

The value of the silhouette coefficient of a point varies between
−1 and 1. A value near −1 indicates that the point is clustered badly.
A value near 1 indicates that the point is well-clustered. To evaluate
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Fig. 3. Distribution of C, P, Fe and Zn in rat brain slices obtained by LA-ICP-MS. The slices describe different physiological conditions and were obtained with different sample
preparation schemes: (a) slice obtained from a brain with stroke induced by photothrombosis (PT). After several years of formalin fixation the brain was embedded in paraffin
and  cut in 40 �m-thick slices which were mounted on glass slides. Before laser ablation, deparaffination was  performed; (b) slice obtained from a brain with stroke induced
by  transient Main Cerebral Arterial Occlusion (tMCAO). After several years of formalin fixation the brain was cryocut and the slices mounted on slides for LA-ICP-MS. (c) Slice
obtained from a healthy brain. The brain was excised immediately after death and shock-frozen. After cryocutting, the slices were mounted on glass slides and imaged by
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A-ICP-MS. Storage in aqueous solution leads to a wash-out of Zn deposits from gre
esulting in an artificial pattern with higher white matter concentrations whereas
araffin  embedding seem to accentuate the deviation of the element distribution fr

he quality of a clustering one can compute the average silhouette
oefficient of all points.

The clustering analysis was performed as follows. In a first
tep, each element image was normalized to the median value of
ts intensity distribution, such that all element distributions were
ompared on a common (and arbitrary) scale. The Euclidian dis-
ance was chosen, implying that all elements were given equal
eights in determining the clusters.

The k-means clustering analysis was performed using Mat-
ab (http://www.mathworks.com), which is a well-established
ommercial package for technical computing, as well as ImageJ
http://rsbweb.nih.gov/ij/),  an open source, Java-based software.
he algorithm implemented in ImageJ is based on methods
escribed in Ref. [15]. The same elements were included in the anal-
sis for the cryocut slices (tMCAO and fresh brain) and a reduced
umber of elements for the paraffin-embedded brain (PT). The dis-
ribution of elements was found to be less structured in the latter
ase, and for the cluster analysis we chose the few distributions
ith pronounced inhomogeneity either in the lesion or in the nor-
al  tissue. The number of clusters was varied from 4 to 12 in each

ase. For each number of clusters the clustering procedure was
epeated 10 times, in order to minimise the dependence of the solu-
ion on initialisation. The silhouette was determined for each point
nd number of clusters and the mean value over the whole slice
as calculated.

In the particular case of lesion induced by photothrombosis,

ince no anatomically based validation of the substructure found
y clustering in the rim of the lesion is available, an additional pro-
edure was carried out. We  have investigated the stability of the
ter e.g., the hippocampal area CA3 and preservation of Zn in white matter deposits
istribution of Fe, C and P is preserved. The several chemical steps associated with
e native one.

regions found in the rim of the lesion by reducing noise in the ele-
ment images used for clustering. The filter used was  that proposed
by Perona and Malik [17,18] based on anisotropic diffusion of infor-
mation. The implementation was that provided by ImageJ, with the
parameter which most pronouncedly influences the noise filtering
set to k = 5 or 10.

3. Results and discussion

The methods reported here were aimed at applications of LA-
ICP-MS to brain research, but are of general validity.

3.1. Image reshaping

Reconstructing the proper shape of the slices analysed by
LA-ICP-MS facilitates a comparison with other methods. As an
example, block-face photographs before cutting and/or microscope
photographs of the brain slices after cutting can be used to identify
the anatomy of the slice with high resolution and familiar con-
trast. Slices adjacent to the ones analysed by LA-ICP-MS can be
processed by various histological stains, immuno-histochemistry
or microscopy using fluorescent dyes, for example. Furthermore,
imaging of the brain using various medical imaging methods before
the animal is sacrificed, or on the fixed intact brain, can help inves-
tigate a variety of diseases and can be used in longitudinal studies.

For a detailed comparison of the element distribution and any of
the methods mentioned above, a good coregistration between the
slices is essential. These aspects are illustrated in Fig. 2. The phos-
phorus image obtained with 138.65 points-per-line is compared

http://www.mathworks.com/
http://rsbweb.nih.gov/ij/
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Fig. 4. Clustering of brain tissue based on element analysis on a slice of rat brain with
stroke lesion, induced by transient Main Cerebral Arterial Occlusion (tMCAO). The
tissue was fixed and cryocut. Clustering was performed with the k-means algorithm
as  described in the text and led to an optimal partition with 10 clusters (left-hand
side). For better identification of the anatomy we show on the right a similar rat
brain slice with Nissl stain taken from [16]. Similar to results on native tissue (Fig. 5),
an  anatomically meaningful parcellation resulted from clustering. A good separa-
tion  between the cortex, layers I–IV (violet and red); cortex, layers V–VI (yellow)
and white matter (black) was possible. Inside the white matter, the hippocampal
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Fig. 6. (a) Overlay of histograms of the silhouette measure for different number of
clusters. Thick lines evidence the partitions with a high mean value of the silhouette:
partition with 4 clusters (blue), 5 clusters (red), 9 clusters (red), and 10 clusters
(green). The range of silhouette values which are histogrammed are between −0.6
and 1 in all cases. The x axis represents the bin number (in terms of silhouette values,
the x-axis unit is 1.6/128/bin). The mean value of the silhouette over the whole slice
is  plotted in part (b) as a function of the number of clusters. For the optimal partition
N  = 9, the distribution of silhouette values over the slice and the nine colour-coded
clusters are shown in parts (c) and (d), respectively. It becomes now possible to
discriminate several distinct concentric zones around the central necrosis of the
tructures fascia dentata and cornu ammonis can be seen. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web  version of
he  article.)

o the photomicrograph taken before ablation (Fig. 2b). Clearly,
he match between the images improves substantially when the
umber of points per line is varied from 138 (Fig. 2a) to 138.65
Fig. 2c).

.2. Segmentation of tissue using cluster analysis and LA-ICP-MS
ata

Since each mass spectrometric imaging measurement results

n a multitude of images reflecting largely independent aspects of
issue, the method is ideally suited for clustering analysis.

Clustering was initially performed using a broad set of 12 ele-
ents which yielded rather high signal in the healthy brain tissue

ig. 5. Clustering of brain tissue based on element analysis on a slice of healthy
at  brain, shock frozen immediately after excision and cryocut. Twelve clusters
ere used for the automatic segmentation. An anatomically meaningful parcella-

ion resulted including the structures bulbus olfactorius (Olf); cortex, layers I–IV
Ctx-A); cortex, layers V–VI (Ctx-B); white matter (WM);  plate of four collins (Coll);
erebellar grey matter (Crbl); hippocampus fascia dentata (1) and the cornu ammo-
is part 1–3 (2). For comparison, the block-face image of the brain and calibration
tandards embedded in blue stained polyethylenglycole is shown on the right.
lesion. (For interpretation of the references to color in this figure legend, the reader
is  referred to the web version of the article.)

and/or the lesion (C, Na, Mg,  P, S, K, Mn,  Fe, Cu, Zn, Pb, U). For the
PT brain, a restricted set of elements was  used (C, P, Fe, Cu, Zn, Pb,
U). The latter set was  selected using criteria of high SNR and lack of
contamination from compounds in at least one isotope. Since the
results were found to be qualitatively similar for the tissue samples
investigated in our study, we will restrict the discussion to the lim-
ited set of elements. Images of C, P, Fe, and Zn are shown in Fig. 3
for all three tissue samples.

We  would like to stress the fact that all elements included in
the clustering analysis were given equal weights. This should be
modified if the transport/accumulation mechanism is found to be
the same or strongly correlated for different elements. Ideally the
clustering analysis would include independent observations only.
An advantage of using this normalization is that quantification of
element concentration, which can be difficult, is not essential for
clustering analysis. The high quality of the element data, however,
is essential. If drifts occur during the rather long measurement time,
the image inhomogeneity is reflected in the clustering. In this case,
an intensity correction has to be performed.

The result of the k-means clustering is shown in Fig. 4 for a slice
of fixed brain with tMCAO, in Fig. 5 for a slice of fresh brain and in
Fig. 6d for a slice obtained from the fixed brain with photothrom-
bosis.

Without a careful quantitative analysis of the element concen-
tration no effect of the tMCAO-induced stroke is visible in Fig. 4. A

left–right asymmetry in tissue properties might be expected, due to
the fact that stroke mainly affects one hemisphere. A more detailed
analysis is in progress. On this slice, clustering provides very good
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ig. 7. (a) Result of clustering analysis performed on data filtered with the Perona–
luster  2 (dark blue): region inside the rim; cluster 3 (light blue): region inside the 

red): region inside the rim. (For interpretation of the references to color in this figu

hite matter (WM)  – grey matter (GM) segmentation and good
elineation of hippocampal structures. While the distribution of
lements is different from the native one, as seen in Fig. 5, anatomi-
al specificity is still preserved by formalin fixation. A more detailed
nvestigation of the effects of formalin fixation on the distribution
f different elements is in place. First results are reported in this
pecial issue [19].

Clustering based on LA-ICP-MS data for native tissue, shown in
ig. 5, leads to excellent anatomical segmentation. Several struc-
ures can be easily identified: bulbus olfactorius (Olf); cortex, layers
–IV (Ctx-A); cortex, layers V–VI (Ctx-B); white matter (WM);  plate
f four collins (Coll); cerebellar grey matter (Crbl); hippocampus
ascia dentata (1) and the cornu ammonis part 1–3 (2). The rich-
ess of visual detail is at least comparable to that offered by the
lock-face photograph shown on the right side, and clustering
as the great advantage of providing automatic and observer-

ndependent segmentation. Clustering-based tissue segmentation
an be expected to have a great impact on e.g., atlasing endeavours
sing element images.

The results shown in Fig. 6 for tissue lesioned by photothrom-
osis are significantly different from those discussed above.
nterestingly, the segmentation of tissue by k-means clustering
eveals substructures in the rim region around the lesion. The lesion
tself, with microvasculature destroyed by dye coagulation lead-
ng to necrosis of tissue, is found to have a very different element
ignature from that of “normal tissue”, as represented by the con-
ralateral hemisphere. It becomes now possible to discriminate
everal distinct concentric zones around the central necrosis of the
esion. In a systematic study of stroke induced by photothrombosis,

he existence of similar partitions in all animals should be investi-
ated. If this proves to be the case, the clustering-based partition
f lesions can be used, for example, to investigate changes in ele-
ent concentration throughout each of the zones at different time
method based on anisotropic diffusion. The regions are: cluster 1 (black): necrosis;
luster 4 (yellow): region inside the rim; cluster 5 (orange): normal tissue; cluster 6
end, the reader is referred to the web version of the article.)

points. We  stress the point that observer-independent clustering
greatly facilitates access to the Terra (nearly) Incognita of lesion
substructure. It can be expected to have a huge impact on studies
regarding e.g., the evolution of the penumbra zone following stroke
or tumour development.

3.3. Optimizing the number of clusters

The dependence of the goodness of clustering, expressed by the
silhouette measure, on the number of clusters is exemplified on the
slice from the PT brain and shown in Fig. 6a–d. Thus, Fig. 6a shows
the histograms of the silhouette value for each point when the num-
ber of clusters varies from 4 to 13. The histogram is concentrated
at higher values, a sign for good clustering, for a small number of
clusters (optimum of 5). In this case, however, the structure is con-
centrated in the rim of the lesion and no substructure is found in the
rest of the brain. A local optimum is found for a moderate number of
clusters, N = 9, in which the lesion and the brain are well separated,
the rim displays substructure, and signs of anatomy (e.g., pixels in
the corpus callosum) begin to emerge. The local maximum is appar-
ent in Fig. 6b, where the mean value of the silhouette over the whole
slice is plotted as a function of number of clusters. For this partition
with N = 9, both the distribution of silhouette values (Fig. 6c) and the
clusters (Fig. 6d) are shown. In contrast to the rim of the PT lesion,
where substructure is well separated, even for a higher number of
clusters (for example N = 13) the anatomy of the brain is not clearly
defined. Among other reasons the washout of Zn and partially of
Cu during fixation may  have accounted for obliteration of the finer
differences in the element distribution, leaving only those which

were initially very pronounced (lesion, rim, normal tissue).

For the particular case of lesion induced by photothrombosis,
clustering based on element imaging provides an unprecedented
characterization. No previous information exists regarding the



2 urnal

n
d
c
b
p
t
n
w
t
i
s
p
o
f
s
m
c
4
r
c
a
t
i
t

w
s
s
e

3
t

t
e
o
t
t
p

m
a
r

4

v
i
t

m
r
r
h
e
m
i
h
s
w

i
i

[

[

[

[

[

[
[

[

[

52 A.M. Oros-Peusquens et al. / International Jo

umber of regions for metal accumulation within the rim. This is
ifferent from segmentation of a slice of healthy tissue, where one
an make use of very detailed anatomical information, as provided
y e.g., histology, in order to validate the results of the clustering
rocedure. We  have therefore repeated the segmentation on fil-
ered images with the aim of reducing the possible influence of
oise and investigating the reproducibility of the clustering results
ith different filter parameters. The reproducibility for different fil-

er parameters was found to be high. Very moderate filtering (k = 5
n the ImageJ implementation) separates the lesion into more clear
tructure than that based on the native data. This is shown in Fig. 7,
art a, with a slightly reduced number of clusters than that found
ptimal for non-filtered images. The structure remains very stable
or higher diffusion constants (higher noise suppression; data not
hown). We  show in Fig. 7b the fingerprint of the element accu-
ulation for selected elements (their mean values within a given

luster) and relevant clusters: necrosis region, “normal” tissue and
 regions within the rim of yet unknown provenience. Most of the
egions found within the rim have very high and varying levels of Zn
oncentration and could be influenced by any chemical procedure
ffecting the distribution of Zn between the native one and that in
he LA-ICP-MS-imaged slice specimen. However, the segmentation
s not based on this single element, since the fingerprint based on
he other elements is also characteristic of each cluster.

The multi-element contribution to determining the partition
ithin the lesion increases the confidence in the element-based

egmentation as reflecting tissue substructure. Further effort
hould be directed towards the understanding of this highly specific
lement accumulation in the rim of the PT lesion.

.4. Characteristics of the samples assessed and influence of
issue fixation

A  careful comparison of the concentration of elements between
he tissue samples is beyond the scope of the present paper. How-
ver, it is clearly seen from Figs. 4–6 that the distribution of some
f the elements in fixed tissue is even qualitatively different from
hat in fresh tissue and also that the accumulation of elements in
he rim of the lesion produced by photothrombosis shows a unique
attern which is not replicated in the tMCAO model of stroke.

In fixed (tMCAO) as well as in fresh tissue the distribution of ele-
ents in the white and grey matter shows characteristic patterns,

nd k-means clustering can easily segment anatomically distinct
egions (Figs. 4 and 5).

. Conclusions and outlook

In conclusion, we have presented a chain of operations which is
ery useful in preparing the data obtained from mass spectrometry
maging for quantitative analysis and neurobiological interpreta-
ion.

We have introduced a simple method for automatically deter-
ining the proper number of (non-integer) points per line for the

econstruction of geometrically accurate images from the stream of
aw data based on the properties of the inertia tensor defined on any
igh-SNR element image. This procedure was validated by congru-
nce to block-face images. We  emphasize the fact that automated
ethods for data analysis will contribute to further increasing the

mpact of LA-ICP-MS data on our understanding of the brain. This
as already been greatly helped by the development of dedicated
oftware for processing of LA-ICP-MS data such as IMAGENA [20],

hich for the moment is based on interactive analysis.

Since mass spectrometry imaging produces a multitude of
mages reflecting largely independent aspects of tissue, the method
s ideally suited for clustering analysis irrespective of the object

[

[
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investigated. Clustering based on multi-element distribution using
a simple k-means algorithm was  able to segment the tissue in
anatomically meaningful regions. Furthermore, it was  possible to
identify distinct patterns of element accumulation in a lesion pro-
duced by photothrombosis. This latter aspect in particular opens a
new avenue to lesion characterization.

Several refinements of the methods presented here should be
made in the future. With respect to image reconstruction, the gen-
eral applicability of the method based on the tensor of inertia to
reshaping of LA-ICP-MS images needs further study. To this aim,
replacing images with their binary mask and investigating the
behaviour of the tensor of inertia with reshaping factor will increase
the generality of the method. If available, comparison to the binary
mask of a microphotograph of the slice mounted on slide before
LA-ICP-MS is expected to increase the accuracy of reshaping. If
the method demonstrates broad applicability, both steps should
be included in automatic processing of LA-ICP-MS data.

The stability of clustering with respect to the number and nature
of elements included in the procedure should also be more system-
atically investigated.

Consistent application of observer-independent segmentation
on LA-ICP-MS data is expected to become a useful tool in the study
of the heterogeneity of metal distribution in different applications.
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